# Key:voltage

Description v · d · e voltage For describing the voltage of power lines, cables, and substations. Group: Power power=transformer Q25428 Status: in use taginfo · GB · IE · IN overpass-turbo

The nominal voltage of a power line, cable, substation, or rail. Voltages can sometimes be safely determined from signage on the support structures (or signs on sites where underground cables run). Alternatively, they can be deduced from the length of insulators, conductor spacing, or other characteristics, in combination with some general knowledge of the power system.

Values should be entered in volts without the unit or thousand delimiter. For example, for a 15 kV line, the value should be voltage=15000, not “15 kV”, nor “15,000” or combinations of this.

When multiple voltages are in use, for example on a power line carrying two circuits, or a substation converting between two voltages, the voltages should be separated by semicolons with the highest voltage listed first: voltage=275000;132000.

This tag should not be used for transformers - the voltage:primary=* and voltage:secondary=* tags should be used instead.

OpenInfraMap shows power lines colour coded by voltage range and its exact value, allowing for quick analysis of the OSM data.

## Nominal/Rated/Maximum Voltages

There is some disagreement between system operators about "nominal" line voltages. A line which is classified 400 kV in the UK and a one which is classified as 420 kV in continental Europe may be carrying very similar levels of voltage in practice - it is only the nominal voltage designation which is different.

In some areas the "nominal" voltage publicised may actually be the maximum continuous rated voltage, especially as methods for regulating voltage improve so lines can be run closer to their theoretical maximum.

There's no easy way of finding out the actual levels of voltage, so the system operator's designation should be used, but it should be noted that these "nominal" voltages aren't directly comparable between countries.

List of min/max voltages as defined by IEC 60038, and typical values used in each country
Min Max Belgium Norway Great Britain
6000 7200 6000
6300
6600
6600
10000 12000 10000
11000
12000
12400
11000 11000
15000 17500 15000
15600
20000 24000 22000 22000
30000 36000 36000 33000 33000
45000 52000 45000
50000
66000 72500 70000 66000 66000
110000 123000 110000
132000 145000 132000 132000
150000 170000 150000
220000 245000 220000
275000 300000 300000 275000
330000 362000
380000 420000 380000 420000 400000
500000 550000
735000 765000
765000 800000

## HVDC systems

Some HVDC systems use the earth or a grounded conductor as return. Not only monopolar HVDC-schemes use such a device, it can be also found at many bipolar HVDC-schemes in order to allow an operation of the scheme in monopolar mode, however in most cases with reduced power. The grounded conductor must be always installed with insulators on the support structures as uncontrolled ground currents lead to undesired electrochemical corrosion. The grounding must be performed therefore with specially designed grounding electrodes, situated and designed so, that no electrochemical corrosion occurs.

The grounded conductor, which is called electrode line, when it runs from a converter plant to a grounding electrode, can but must not be mounted on the towers carrying the high-voltage poles of the HVDC-scheme. It can also run on a separate line or fixed on towers of AC-lines. As it runs into a ground electrode, it can serve as ground wire, whereby the insulators must be equipped with lighting arrestors.

If the towers of an HVDC-line carry also a conductor used as grounded return, the voltage must be described with “HVDC-voltage ; 0”, if not than set just the HVDC-voltage. For AC-lines carrying a grounded return conductor of an HVDC-scheme, set as voltage “AC-voltage(s) ; 0” and as frequency “AC-frequencies ; 0”.

Ground return conductors of HVDC-schemes must be always considered at cable count.

The voltage value 0 for such lines is strictly spoken not correct. In fact, it shows a voltage against ground which is equal to the product of the line current and the sum of ground resistance and resistance of line to grounding point, but as the current value depends on the load and resistance values are often not available, the value 0 is a good choice as it implies, it is grounded.

## Examples

A high-voltage transmission line carrying two circuits with a voltage of 110 kV would use the following keys and values:

A transmission line carrying two circuits at 110 kV and one at 66 kV:

An electrified railway track in Germany with overhead power supply:

Nearly the same for a subway with separate rail for power supply:

A street with overhead wires for trolley busses:

A distribution substation, stepping down the voltage from 11kV to 400V for use by houses: