From OpenStreetMap Wiki
Jump to: navigation, search
Available languages — Tag:power=compensator
Afrikaans Alemannisch aragonés asturianu azərbaycanca Bahasa Indonesia Bahasa Melayu Bân-lâm-gú Basa Jawa Baso Minangkabau bosanski brezhoneg català čeština dansk Deutsch eesti English español Esperanto estremeñu euskara français Frysk Gaeilge Gàidhlig galego Hausa hrvatski Igbo interlingua Interlingue isiXhosa isiZulu íslenska italiano Kiswahili Kreyòl ayisyen kréyòl gwadloupéyen kurdî latviešu Lëtzebuergesch lietuvių magyar Malagasy Malti Nederlands Nedersaksies norsk norsk nynorsk occitan Oromoo oʻzbekcha/ўзбекча Plattdüütsch polski português română shqip slovenčina slovenščina Soomaaliga suomi svenska Tiếng Việt Türkçe Vahcuengh vèneto Wolof Yorùbá Zazaki српски / srpski беларуская български қазақша македонски монгол русский тоҷикӣ українська Ελληνικά Հայերեն ქართული नेपाली मराठी हिन्दी অসমীয়া বাংলা ਪੰਜਾਬੀ ગુજરાતી ଓଡ଼ିଆ தமிழ் తెలుగు ಕನ್ನಡ മലയാളം සිංහල ไทย မြန်မာဘာသာ ລາວ ភាសាខ្មែរ ⵜⴰⵎⴰⵣⵉⵖⵜ አማርኛ 한국어 日本語 中文(简体)‎ 吴语 粵語 中文(繁體)‎ ייִדיש עברית اردو العربية پښتو سنڌي فارسی ދިވެހިބަސް
Public-images-osm logo.svg power = compensator
Static VAR Compensator 2a.png
A static power device used to ensure power quality and network resilience. Edit or translate this description.
Group: Power
Used on these elements
may be used on nodesshould not be used on waysshould not be used on areasshould not be used on relations
Useful combination
Status: approvedPage for proposal

Various components are used for controlling reactive power and voltage quality in a power grid. Here are some suggested tags for different types of compensators.

How to map

Basically, a compensator whatever its type is mapped as a node with power=compensator on.
You can add extra details about its actual location with location=* and its operator=*.

Such device may be seen mostly in power substations but along power lines too.
We can see them in factories or large industrial sites, but often in a local substation dedicated to industrial power feeding (substation=industrial)

Advanced mapping

There may be more complex systems, composed of several different component described below.
Such cases can be described with as many node as components involved in the system, depending of what you see in a survey or aerial imagery.
All components may be linked with power=line + line=bay ways.


Key Value Comment Recommendation
power compensator Defines this node node or area area as a compensation component mandatory
compensator <compensator type> See below for possible values. This tag should be specified when the compensator type is known recommended
voltage <voltage> The voltage at which the compensator is operated recommended
rating <power> Mvar/kvar The power rating of the compensator. The unit should be Mvar (megavolt-ampere-reactive) or kvar (kilovolt-ampere-reactive) recommended

Compensator values

Key Value Comment
compensator shunt_reactor A shunt reactor absorbs excess reactive power. It looks like a transformer but has no secondary terminals.
shunt_capacitor A shunt capacitor bank generates reactive power
static_var A static var compensator (SVC) comprises a thyristor controlled reactor, normally a thyristor switched capacitor and often fixed or switched reactors and capacitor banks.
statcom A static synchronous compensator (STATCOM) is a transistor based compensator (its design is similar to a VSC converter, see above).
synchronous_condenser A synchronous condenser is a large rotating synchronous machine (similar to a generator) for generating or absorbing reactive power.
filter A harmonic filter is used to eliminate harmonic currents generated by an HVDC converter. These can be quite large and may appropriately be mapped as area. Other types of filters for removing undesired frequency components may also occur.
series_reactor A series reactor is used for controlling load sharing between parallel power lines or for limiting short circuit currents. The smoothing reactor of an HVDC converter is also a series reactor.
series_capacitor A series capacitor is sometimes inserted in a long power line to increase the transmission capacity.


A voltage regulator keeps voltage flowing onto a power line constant throughout its loads. These are usually used on power plants or placed in the middle of a long distribution line.


To be completed